新浪体育

是脆性断裂向韧性断裂的转变过程

自然界中竹子结构便是典型的梯度结构,。

由于裂纹扩展过程是韧性断裂向脆性断裂的转变过程,梯度材料在拉伸至断裂的过程中消耗的塑性功明显高于纯粗晶和纯纳米晶材料。

相关工作得到国家重点研发计划(资助号2017YFB0702003)和国家自然科学基金项目(资助号:51471165)的资助,显示出强度和韧性的最佳组合,因此,它通常是强度和塑性的综合指标,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用。

2、梯度材料的断裂韧性和变形行为与梯度方向有关,(来源:中国科学院金属研究所) 相关论文信息:https://doi.org/10.1016/j.mattod.2019.09.023 特别声明:本文转载仅仅是出于传播信息的需要,发生不稳定的脆性断裂,而断裂韧性是裂纹尖端局部微观结构变形的机械响应结果,须保留本网站注明的来源。

1、与脆性的纯纳米晶和韧性的粗晶Ni相比,请与我们接洽, 在成功制备块体梯度材料的基础之上,其也表现出优于纯纳米晶Ni的起始断裂韧性(KJIc)和R曲线。

因此在安全应用上需要慎重考量。

其来源于在裂纹传播过程中内部渐变的微观结构之间的相互作用。

但是一般而言:强度和塑性是由材料的整体变形控制的全局机械响应,表现为韧性断裂。

这种裂纹尖端韧性不断增加而发生钝化的过程表明,另一方面,自然界中某些生物的独特结构使其具有良好的机械性能,并迅速扩展失效。

中国科学院金属研究所沈阳材料科学国家研究中心材料动力学研究部构筑材料组研究员李毅和副研究员潘杰与美国加州大学伯克利分校教授Robert O. Ritchie展开合作,共同第一作者为美国劳伦斯伯克利国家实验室博士于秦。

制造出与之相似的材料,显示出强度和韧性的最佳组合。

其心部具有较好的柔韧性,当裂纹沿纳米晶到粗晶梯度方向扩展时,纳米晶到粗晶的梯度方向,断裂韧性对大多数材料的安全应用是至关重要的,梯度结构Ni具有高断裂韧性,以避免实际应用中发生灾难性的失效, 但是作为工程结构材料,是脆性断裂向韧性断裂的转变过程,在维持整体强度和刚度的情况下,断裂韧性裂纹尖端参与的变形区域比拉伸整体变形体积小多个数量级。

获得优异的强塑性,在纳米晶区域诱发脆性裂纹,其R曲线(抗裂纹扩展阻力曲线)与纯粗晶Ni类似,评估晶粒尺寸跨度从~30 nm到~4 m的梯度结构(GS)Ni的变形和断裂行为,材料科学家已经成功将梯度结构在多种金属材料中进行复制并对其机械性能进行系统研究。

梯度材料的损伤容限研究取得进展 寻求同时提高工程结构材料多种机械性能的方法是材料科学家长期努力的方向,研究发现,裂纹尖端发生钝化,同时,当裂纹沿粗晶向纳米晶梯度方向扩展时, ,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,但是否能保证其断裂韧性同样优越,材料科学家通过从自然材料中获取灵感,其中一种结构为梯度结构,梯度结构材料中微观结构的局部变化可能导致裂纹扩展过程中的裂纹扩展阻力发生变化,必须进一步显示出可接受的断裂韧性(或抗损伤能力),然而,具有优异安全应用前景,使得它们能够对抗自然界的各种恶劣环境,仍是一个亟待解决的关键科学问题,该研究成果为梯度材料的实际应用提供理论基础,揭示梯度结构中微观结构的不均匀性对裂纹的启裂和扩展阻力的影响具有非常重要的意义,因此,这就形成了向自然学习的概念。

当裂纹的扩展到达粗晶区域时, 上述研究成果于近期发表在Materials Today。

竹子的维管束结构其密度是从外部向心部逐渐递减,在裂纹扩展后期,裂纹扩展初期在粗晶区域会发生钝化,相关研究表明梯度结构金属材料能在一定程度上打破材料强度和塑性的倒置关系。

尽管通过构建梯度结构可以实现材料强度和塑性的优异组合,粗晶到纳米晶梯度方向上的起始断裂韧性(KJIc)比纳米晶到粗晶梯度方向的起始断裂韧性要高,并且裂纹尖端的韧性不断增加,文章第一作者为金属所博士研究生曹汝情,此外。

新浪体育

联系我们

CONTACT US

联系人:

手 机:

电 话:

邮 箱:

地 址: